
Composable Designs with UFA

Stephan Herrmann
Technical University Berlin,

10587 Berlin, Germany

stephan@cs.tu-berlin.de

ABSTRACT
While aspect–oriented approaches draw their strength from
improving modularity at the source code level, their accep-
tance for wide spread application depends on a seamless
embedding into the software life–cycle. When striving for
an appropriate design notation for AOSD it is important
to carefully balance the abstraction required by design with
the precision required for implementing a given design.

We choose the Aspectual Collaborations model [7, 5] as a
basis, which allows separate development of modules com-
prising sets of collaborating classes and a posteriori integra-
tion of such modules. We present UFA (UML for Aspects)
as an extension of the UML, which maps these modules to
packages in UML. We furthermore focus on multiple lev-
els of bindings between modules and their elements. UFA
closes the gap between collaboration based design and an
implementation that allows unanticipated composition in an
aspect–oriented style.

1. WHEN DO ASPECTS ARISE?
The notion of aspects as used in the AOP community seems
to be closely related to the source code. It is defined by the
crosscutting of concerns which is manifest in scattering and
tangling of source code. In order to define a notation and
a method for aspect–oriented design it is therefore impor-
tant to examine whether the phenomenon of crosscutting
also exists in earlier phases. There are two possible reasons,
why crosscutting is less a problem in design, than it is in
implementation:

Firstly, for some aspects there exists a level of abstraction at
which they appear atomic, i.e., without internal structure.
This is the kind of aspects for which it suffices to attach
a tagged value or property to certain UML symbols in the
design. Persistence is such a concern, which may well be
scattered over large parts of a model, but at a given level
of abstraction a property {persistent} is enough to say.
There would be little advantage in separating out the defi-

Submitted for: Workshop on Aspect-Oriented Modeling with UML,
April 22, 2002; Enschede, The Netherlands.

nition of which classes should be persistent, because apply-
ing this aspect to an application is not more than creating
a relation between a subset of classes and the persistence
property. It is not a significant difference, how this rela-
tion is established: by inserting {persistent} at appropri-
ate places in the class diagram (where it still can be hidden
by a tool option), or by separately listing all classes that
should have this property. This kind of aspect arises as an
atomic property of certain design elements. Later on, such
an aspect may well need to be refined, giving internal struc-
ture to what has been atomic before. At this point many
CASE tools provide the capability of generating code frag-
ments from stereotypes and tagged values. This generative
technique corresponds to AOP techniques, as it introduces a
new tool for multiply applying a structured concern to var-
ious model elements without requiring manual duplication
of design or code.

Secondly, UML by itself is already multi–view capable. By
definition, sequence diagrams1, e.g., cut across the class
structure of a system. Concepts can be kept apart in differ-
ent diagrams, which contribute to the same graph of classes
in the structural view. At a first glance this seems to imply
that aspect–orientation has long been solved at the design
level. At a closer look, much remains to be done, until it will
be possible to produce really untangled designs which can
smoothly be mapped to equally untangled implementation.
Behavior modeling is more problematic in object–oriented
design than structural modeling.

1. Sequence diagrams are only seemingly decoupled from
class diagrams. In fact a sequence diagram may rely
on almost every detail of its underlying class diagram:
classes, associations, methods, signatures. Only inher-
itance is usually not visible in sequence diagrams. The
effect is that class diagrams will be updated when cre-
ating a sequence diagram, and that modifying a class
diagram may create arbitrary inconsistency to all de-
pendent sequence diagrams.

2. The lack of compositionality of sequence diagrams has
motivated a lot of research regarding their semantical
foundations.

3. For some cases, sequence diagrams are too concrete,

1In this discussion we focus on sequence diagrams for be-
havior modeling. Many observations will also apply to other
behavioral diagrams.

and as [1] points out package parameters may greatly
improve the reusability also of sequence diagrams.

4. Even if a design looks untangled it may not meet ex-
pectations as long as it does not give any hints on how
to create an untangled implementation without major
restructuring.

From our experience, the most significant problem with de-
signs for aspect–oriented programs is in the independent
stepwise definition of complex behaviors. This is although
methods for role– and collaboration–based modeling have
been around for many years now [9].

2. EXTENDING UML FOR PLUGGABLE
COLLABORATIONS

We propose an extension to the UML, which is geared to
modeling complex behaviors with the following properties
and intentions:

• The behavior remains abstract at some points in order
to remain reusable.

• Behaviors are designed for the purpose of being applied
to one or more existing modules. This application of an
aspect to a core module may have the effect of adapting
the core.

• The behavior can be adapted to different contexts.

• Internal details of the behavior and of the core to which
it is applied should be hidden to the other side. Inde-
pendent refinement should be possible.

• The core module should in particular not be bloated
with information from the applied behaviors.

The problem of crosscutting lies in non–trivial relationships
between modules. Thus the adapt relationship between an
aspect and a core module has structure, too. Accordingly,
the emphasis of our UML extension lies on refining the bind-
ing by which a complex behavior is applied to a core module.

New design notations are often assessed by their indepen-
dence from any programming language, i.e., by their ab-
straction over implementation. In contrast, we claim that
the main goal of a design notation should be enabling the
developers to smoothly move from analysis to implementa-
tion. Therefore developers need tools for abstraction and for
refinement. Thus, the goal must be, to provide a minimal
set of concepts, that allows an abstract conception of a large
system as well as detailed instructions to the programmer.
Since aspect–oriented programming languages (AOPL) are
still quite young and no common structures have been agreed
upon (despite the very similar intentions), a new design no-
tation must choose a programming model towards which
the refinement process is optimized. If seamlessness can be
shown for one language, but transition to other languages
remains difficult, it is still to be shown whether this is a
deficiency of the AOD notation or the AOPL.

We chose for this work the model of Aspectual Collabora-
tions [7, 5]. This model combines several composition tech-
niques from existing AOPLs. It has been implemented in a

language prototype called LAC [5]. A Java based compiler
is under development.

2.1 From Decomposition to Composition
Separation of concerns and decomposition have been guiding
principles in software engineering from the beginning. Cen-
tral concepts in all aspect–oriented approaches add refined
capability to speak about the composition of those disparate
parts. Pointcuts in AspectJ [6] just like composition rules
in Hyper/J [11] define the gluing of pieces of code from dif-
ferent modules.

Many different criteria have been proposed for a taxonomy
of binding capabilities, including cardinality, granularity and
time of binding [8, 3, 4]. Binding can furthermore be explicit
or implicit, operationally or declaratively defined etc.pp.
From this follows, that choosing the binding mechanisms
significantly determines what designs can be expressed and
whether these designs will be comprehensible and reusable.

Design should be regarded as a series of steps that add more
and more details to an abstract model. It should be clear
that designing the composition of modules into a system
requires to capture the involved bindings at different levels
of abstraction resp. detail.

2.2 Packages as first class citizens
Just like [1] we use UML packages for encapsulating parts of
a system that contribute to a complex behavior. In order to
give more semantics to packages than is provided by UML
packages we allow defining top–level properties (attributes
and methods) of packages, which encourages to use a pack-
age as a façade for controlled access to its contained classes.
Graphically this is done by adding one or two corresponding
compartments to the box representing a package.

When designing packages for reuse it is crucial to provide for
extension points by which it can be configured for its differ-
ent uses. Such packages can only be used in an application
if all specific extensions are in place. Thus, the reusable
part is in a way incomplete. We mark incomplete packages
with an {abstract} property. Roughly spoken, this prop-
erty should be applied if an abstract class exists, for which
no concrete subclass is defined. Such a class cannot be used
without additional measures like subclassing.

We have chosen the analogy to abstract classes rather than
to template classes, because explicit parameters are only
convenient when used in a small number and with little
structure. However, package level incompleteness, as we
will see in a moment, usually concerns several methods from
several classes with their given signatures. At this level, de-
velopers are already familiar with incompleteness through
abstract declarations. Technically, parameters and abstract
methods are only different styles of defining open spots.
What matters, is the provision for powerful binding mecha-
nisms.

In accordance to the class–like status, which we give to pack-
ages, the specialization relation can also be applied to pack-
ages. This is, among other intentions, how concrete packages
can be derived from abstract ones. A refinement (special-
ization) of a package contains all classes and package level

«adapt»

Observer
{abstract}

Library

ObserveLibrary
«connector»

Figure 1: Applying the Observer pattern

features of its super package. It may specialize an inherited
class by simply defining a class of the same name, that im-
plicitly inherits from the corresponding class of the super
package.

2.3 Package composition — abstract level
The most common relationship between packages is classes
of one package (explicitly) using classes or interfaces of the
other package (dependency/uses relationship). The previ-
ous section has also introduced a refinement or specializa-
tion relationship for packages. A third relationship results
from analyzing how AOPLs support independence between
modules. Independence can either be two–way resulting in a
symmetric binding as is the case with concern composition
in Hyper/J [11]. Alternatively, binding can be performed
within one of the involved packages. This is closer to the
AspectJ [6] approach. We introduce a directed adaptation
relationship which declares that an adapting package may
use and influence another (adapted) package, without the
latter knowing about the former. The adaptation relation-
ship plus a refinement relation suffice to realize also a pos-
teriori integration of two or more independent packages by
extending one package and at the same time adapting one or
more packages. For an example see figure 1. It reuses the ex-
ample of [1] where the Observer pattern is applied to a model
of a library in order to keep a book manager up-to-date re-
garding the status of book copies, which can be available
or borrowed. So far, our figure adds little to the notation
given in [1] other than giving a name to the binding relation
that now is represented by the package ObserveLibrary2.
This package is a refinement of the general Observer pattern
which now adapts the library core model. The direction of
the adapt relation signifies that the core model is unaware of
this adaptation, but the adapting package knows the core.
Also package Observer is unaware of the library package,
only the connector has all needed information in order to
weave the Observer behavior into the library model. This
can roughly be compared to AspectJ’s feature of abstract
pointcuts: an aspect modifies a yet undetermined module.

2Our notation even seems to remove the essential part of
composition patterns: package parameters, but these will
re-appear in a different shape at the next level of detail.

EXPRESSIONS
«adapt»

ExprEval
«connector»

ExprPrint
«connector»

ExprTraverse
«connector»

Traverse
{abstract}

Figure 2: Two applications of a general traversal
module

Note, that refining Library is not an option, because it
must be possible for other parts of the system to operate on
the original package while still (unknowingly) taking benefit
from the adaptation. The role of the intermediate package
ObserveLibrary is additionally emphasized by a stereotype
«connector». The precise distinction between the anno-
tations «connector», {abstract}, and still other forms of
incompleteness also requires considerations at the level of
programming languages and thus is beyond the scope of this
paper.

Another illustration is given in figure 2. The right hand
package EXPRESSIONS contains the structural definition of
an expression language. Let’s assume this package is reused
from a different project. This is illustrated by different nam-
ing conventions within this package — package and class
names in all capitals — as compared to the mixed capital-
ization in all other packages.

Package Traverse defines traversal over arbitrary structures
that follow the Composite design pattern. This package will
only define a skeleton of traversal leaving a set of hook meth-
ods abstract. That’s why the package is marked abstract.3

A direct sub–package (in terms of specialization) called
ExprTraverse partially binds the abstract traversal to a
given expression structure. This package connects packages
Traverse and EXPRESSIONS, which is noted by the stereo-
type «connector». From this still abstract package two spe-
cializations are derived that implement concrete traversals:
evaluation and pretty printing. This design obsoletes the
Visitor design pattern, as it allows separating structure and
traversal. It is superior to the Visitor pattern, as it requires
no pre–planning within the structure–defining classes.

Each connector stands for one application of the abstract
collaboration (pattern) to a given core model. Reifying the
connector serves two purposes4. First, it supports reuse of

3For explicitness, in our examples we mark package level
abstractness textually using {abstract}. Normal abstract
classes that are super classes of concrete classes have a name
written in italics as suggested by the UML.
4This is at design level. Implementation draws even greater

EXPRESSIONS

ExprTraverse

EXPR

NUM PROD BIN

Node

Traverse

process()

{abstract} Composite
process()
pre()
post()
step(i: int)
get_children():List[Node]

{abstract}

2

factors«adapt»

«connector»

*

Node = EXPR

children

left, right

run(e : EXPR)

= PROD

= BIN

VAR_APPL PLUS MINUS

{abstract}
Leaf

Composite = Leaf =

= NUM

=VAR_APPL

Figure 3: Mapping classes between packages

partial bindings. Secondly, this gives a natural place for
adding details during the refinement process. These details
can either be additional features or binding of existing fea-
tures. We introduce notational means for binding details in
two steps: at class–level and at feature–level. A program-
ming language like LAC needs to also consider binding at
the level of method parameters. We consider this last level
— but only this last level — as beyond the scope of design.

2.4 Package composition — class level
The first step is shown in figure 3.5 Here we specify which
role in the abstract pattern is to be realized by which class
from the core expression model. Note, that this mapping
is not necessarily 1:1. In fact, it is central to AOP (as
to any technique that supports reuse) to apply one con-
cept at different places simultaneously. In this vein the role
Composite from package Traverse is played by the set of
classes PROD (n-ary products) and BIN (binary expressions)
with its two subclasses PLUS and MINUS. Similarly, Leaf is
played by classes NUM (number) and VAR APPL (variable ap-
plication). Our notation provides three options:

• A role class that is uniquely mapped to a core class
appears printed as ROLE=BASE (cf. Node=EXPR).

• A role class that has no direct correspondence in the
core package appears as ROLE= (cf. Composite=) signi-
fying that bindings exist at a different level.

• A set of core classes that is bound to the same role class
is shown as specializations of a (possibly unbound) role
class using a =BASE notation (cf. =PROD).

Options two and three are a shorthand for specifying, e.g.,
Composite=PROD. While the differently bound versions of a

benefit from this concept.
5We skip this step for the observer example.

ExprEval

Leaf =
 = NUM.process()
 = VAR_APPL.process()
Composite =
 post()
 = PROD.pre()
 = PROD.step()
 = BIN.pre()
 = PLUS.step()
 = MINUS.step()

 Composite
accumulator: int

ExprTraverse

Node = EXPR

= BIN

= PROD

=NUMget_children()

get_children get_factors

«connector»

«connector»

Leaf =Composite =

=VAR_APPL

Figure 4: Method bindings

role are in fact specializations of the abstract role, the role
class can also be compared to a supplementary super type.
In the traversal’s view, expressions PROD and BIN have a
common super type Composite= that did not exist in the
original expression package. Subclasses =PROD and =BIN do
the necessary adaptations in order to produce conformity to
the common super type.

The reverse situation to the introduction of super types
would be to map different subsets of one core class to differ-
ent roles. On the object level, the first situation defines set
union, while the second situation introduces subsets. The
latter has been discussed in [4] but falls beyond the scope
of this paper. The relevance of such mappings between mis-
matching inheritance structures lies in the quest for unan-
ticipated composition of independently developed packages.

Aside from class mappings, figure 3 also shows one package
level method, run. This method is the main entry to the
functionality provided by the package. Clients of the pack-
age need not know any further details. The sub–package
ExprEval (not detailed in this paper) also declares a package
level attribute, by which the result of run is made available
to clients. This demonstrates the similarity of this design to
the Visitor pattern, i.e., the package itself acts as a visitor,
that can, however, be applied without any pre–planning in
the expression package.

2.5 Package composition — method level
When binding a role class to a base class, this binding has
to be detailed at the method level. First of all, a role class
may contain abstract methods, for which an implementation
must be provided during binding. An implementation can

«adapt»

Subject = BookCopy
notify after{borrow, return}

ObserveLibrary

Observer = BookManager
 update updateStatus

start after buy
 stop after drop

{open}

Observer
{abstract}

Library

: delegates to
 (callout)

: is invoked after
 (callin)

after

Figure 5: Different styles for method binding

be given by a method binding or in–place. For an exam-
ple of in–place implementation, look at figure 4. Method
get children() in class Composite=BIN is implemented di-
rectly. It assembles a list from the current object’s left and
right sub–expression.

Using package refinement as in ExprEval, it may be conve-
nient to just list all inherited methods that need to be de-
fined. There is no benefit in drawing the same class structure
again as in package ExprTraverse. The structure of such
listings applies indentation to represent inheritance struc-
ture. This notational style is used when a package intro-
duces no or little new structure, but only fills in the yet
abstract methods from its super–package. It can be seen as
a checklist for the programmer, which collects in one place
all the methods he or she must implement within the given
package.

Instead of in–place implementation, methods may also be
bound in a declarative way as demonstrated by get children
in Composite=PROD. The method that is needed here already
exists as PROD.get factors. In this case delegation may be
specified using a delegation arrow →. Such notation shows
that nothing really remains to be implemented, but declar-
ative binding in terms of delegation suffices.

A second way of binding methods is demonstrated in figure
5. Method Subject.notify needs to be woven into the core
model. More precisely, two methods — borrow and return
— need to be augmented by this additional behavior. This
technique is inherent to many AOPLs. In order to illustrate
similarity and difference to delegation–style bindings, we use
the reverse arrow ←, and speak of callout (delegation) ver-
sus callin (advice weaving) bindings. These names capture
bindings from the perspective of a role class, that either uses
external behavior (callout) or requests the base to call into
the role method (callin). Just in the style of AspectJ, callin
bindings can be specified as before, after, or replace (in
AspectJ: around) advice.

If method definitions and method bindings are given in the
same role class, these appear in different compartments. I.e.,
a role class may at most contain four compartments: name,
attributes, methods, bindings.

3. RELATED WORK
Design notations for AOSD are a fairly young issue. The
most advanced approach, to the best of our knowledge, is
by Clarke and Walker. Their work has influenced the de-
velopment of UFA. During the aspect workshop of ICSE
2001 it has been noticed that Clarke and Walker’s composi-
tion patterns [1] fit very nicely to Aspectual Collaborations
[5]. The examples for composition patterns have been im-
plemented in LAC with great ease. Therefore with using
Aspectual Collaborations as our conceptual foundation the
motivation given in [1] applies also to UFA. The decisive
difference lies in reifying the binding relationship. While
composition patterns attach all details to a dependency re-
lationship of stereotype «bind» we propose to use an ad-
ditional package symbol, which can hold all details of this
binding.

The UML requests such intermediate symbol even for in-
stantiating a template class. We consider this an unneces-
sary burden, because no additional information is given by
this symbol, which is thrown away for the implementation
anyway. In contrast, we advocate to see composing different
concerns as a concern in its own right. We have presented
binding details regarding classes and methods that would
without the connector symbol not have a natural place in
diagrams.

Composition patterns introduce an additional convention for
distinguishing two different methods of the same name: for
the case of around advice, they prepend an underscore to the
method name and use this as a package parameter. This
gives a name to the base method to which an advice will
be bound. We consider this superfluous, because this name
may only be used within the corresponding advice. This
would be like giving explicit names to all methods that are
inherited but overridden. It is a matter of the program-
ming language to provide means (like super for inherited
methods) for accessing these methods within overriding or
advising methods.

For a more in depth discussion of related work we refer to [1].
Much of what has been said there could only be repeated
here. This concerns the discussion of SOP[2] and especially
of OORAM[10].

4. SUMMARY
We have presented an extension to the UML called UFA
(UML for Aspects), which treats aspect composition at the
level of packages. Aspects as well as their bindings make use
of a specialization relationship between packages. Details of
binding can be given at the levels of classes and methods.
These can bridge mismatching structures of an aspect (col-
laboration) and a core model to which it is being applied.
Two styles of method binding enable a connector package to
use functionality of the base model and also to modify the
behavior of this base model. These two styles correspond to
delegation and advice weaving.

We have presented the notation using the well–known de-
sign patterns Observer and Composite. The latter exam-
ple replaces the Visitor pattern with better separation of a
structure definition and traversals over this structure. These
examples should, however, not imply that UFA only aims at
modeling design patterns. We have first results of using
this notation for modeling higher–level behaviors from busi-
ness domains. It is this kind of application we had in mind
when developing UFA for modeling complex behaviors. All
our UFA models have also been implemented using the lan-
guage prototype LAC. The results show, that UFA models
can smoothly be implemented given a matching AOPL. Both
a graphical editor for UFA and a Java based compiler for
Aspectual Collaborations are being developed. Using both
tools we plan real world case studies of UFA and Aspectual
Collaborations for assessing both techniques and their com-
bination. While we wouldn’t preclude the use of UFA with
different AOPLs, we hope that UFA plus Aspectual Collab-
orations will yield improved modularity of models and code,
and smooth transitions between both representations.

5. REFERENCES
[1] S. Clarke and R. Walker. Composition patterns: An

approach to designing reusable aspects. In Proc. of the
23rd ICSE, 2001.

[2] W. Harrison and H. Ossher. Subject-oriented
programming: a critique of pure objects. In Proc. of
OOPSLA’93, pages 411–428. ACM, 1993.

[3] S. Herrmann and M. Mezini. Dynamic view
connectors for separating concerns in software
engineering environments. In Proc. of MDSOC
workshop at the 22nd ICSE, 2000.

[4] S. Herrmann and M. Mezini. PIROL: A case study for
multidimensional separation of concerns in software
engineering environments. In Proc. of OOPSLA 2000.
ACM, 2000.

[5] S. Herrmann and M. Mezini. Combining composition
styles in the evolvable language LAC. In Proc. of
ASoC workshop at the 23nd ICSE, 2001.

[6] G. Kiczales, E. Hisdale, J. Hugunin, M. Kersten, and
J. Palm. An overview of aspectj. In Proc. of 15th
ECOOP,, number 2072 in LNCS, pages 327–353.
Springer–Verlag, 2001.

[7] K. Lieberherr, D. Lorenz, and M. Mezini.
Programming with aspectual components. In
Technical Report, Northeastern University, April 1999.

[8] K. Ostermann. Object-oriented composition: An
analysis and a proposal. Master’s thesis, University of
Bonn, 2000.

[9] T. Reenskaug, E. P. Andersen, A. J. Berre, A. Hurlen,
A. Landmark, O. A. Lehne, E. Nordhagen,
E. Ness-Ulseth, G. Oftedal, A. L. Skaar, and
P. Stenslet. OORASS: Seamless support for the
creation and maintenance of object oriented systems.
Journal of Object-Oriented Programming, Oct. 1992.

[10] Trygve Reenskaug. Working with Objects – The
OORAM Software Engineering Method. Prentice Hall,
1996.

[11] P. Tarr and H. Ossher. Hyper/J User and Installation
Manual. IBM Corporation, 2000.

6. APPENDIX: UFA SUMMARY

«adapt»

Collab
{abstract}

Base

Conn
«connector»

− Package needing refinement before use.

− Package refinement/specialization.

− Package connecting the independent
 packages Collab and Base.

− Directed adaptation relation:
 Conn may use and influence Base.

− Ordinary package.

Figure 6: Package kinds and relationships

conn_method (arg: T)

conn_attribute: Type

Conn
«connector»

Role = BASE

= BASE1 = BASE2

RoleSuper =

− 1:1 mapping of role to base

− Binding of a role class to several base classes.
 A shorthand for RoleSuper=BASE1 and
 RoleSuper=BASE2, which also shows a
 super type common to both bound roles.

− Connector/collaboration level attribute.

− Connector/collaboration level metho.d

Fig. 7: Class mappings and collaboration level features

Role = BASE

roleMeth1 baseMeth1
roleMeth2 before baseMeth2
roleMeth3 after baseMeth3
roleMeth4 replace baseMeth4

role_attribute

role_method()

− Attribute declaration.

− Method declaration.

− Advice weaving before,
 after, and
 replacing the original method.

− Delegation binding.

Figure 8: Method bindings

