

Motivation

Team Inheritance
Applying inheritance
to compound modules

Inheritance cannot only be applied to atomic classes
but also to a whole team, even if it contains nested
teams (see Scalability).

Implicit role inheritance
A role with the same name as an inherited role
implicitly overrides the existing role and inherits its
features. Thus a team can be used as a framework,
where all features (at any level of nesting) are
hotspots which can be overridden in a sub-team.

Consistent refinement of
relations between roles

A relation defined between roles of a super-team is
implicitly adjusted to consistently connect roles
of the sub-team. So within the FlightBonus team,
the inherited association Subscriber ↔ BonusItem
automatically refers to FlightBonus.Subscriber and
FlightBonus.BonusItem, making it impossible to mix
roles from different teams.

Role instantiation
Creating a role instance determines the role class
to use from the enclosing team instance. Thus, the
tedious Factory design pattern is no longer needed.

 Bonus

 Subscriber

 BonusItem

 FlightBonus FlightBooking

Passenger

Segment

Flight«adapts»
 Subscriber

 BonusItem

Collaboration Modules
Team classes – modules larger than classes
Teams combine desirable properties from classes (OOP) and packages (source code organization).
As classes teams are instantiable, have attributes and methods and support inheritance.
As packages teams support nesting which is optionally realized by a hierarchy of directories and files.

Role classes – relative entities
Each role instance lives in exactly one enclosing team instance, thus participating in one collaboration.
A role class can be bound to a base class using a «playedBy» relationship (see Adaptability)

Tools

Scalability

new BonusItem()

Limitations of
Object-Oriented
Programming

Object Teams
provides

Collaboration Modules
Team classes, grouping sets of collaborating roles,
provide clean modularity and encapsulation even

for crosscutting concerns.

Role Binding
The playedBy relationship enables a role
to transparently decorate and/or adapt its

bound base.

Team Inheritance
By applying inheritance to compound modules,

reusability is significantly improved.

Compositionality
The relationships role containment,
 role binding and team inheritance

can be composed freely in order to
create larger structures.

Tools
A wide spectrum of well-integrated tools
supports high productivity for developing

quality software in ObjectTeams/Java.

Scale
While object-oriented programming works very well
in the small, creating a system from 1000s of classes
does not sufficiently support a good modular structure.
Classes need to be grouped to scalable modules
in order to reduce the number of possible connections
between classes.

Complexity
Any single dimension of decomposition does not support
to explicitly capture several crosscutting concerns.
As a result an object-oriented implementation of
crosscutting concerns yields concerns that are
scattered over many classes, while in each of these
classes several concerns occur tangled with each other.

Long-term Maintenance
and Evolution

For any given point in time the above problems could
be tolerated, but if a software system is supposed to
be used over a long period of time, in which it must be
maintained and should evolve, superior modularity is
required to prevent sky-rocketing development costs.

Compositionality

Layering

Stacking

Nesting

Programming language features should be
orthogonal in a way that allows for flexible use
and combination to achieve scalable designs.
To support this compositionality, in Object Teams
a class can have up to 3 natures simultaneously:
Team, Role, and Base. The three architectural
styles shown below capture the most common
usage patterns demonstrating orthogonality and
scalability in Object Teams:

Teams can be nested recursively,
allowing teams to act as roles (or:
roles being implemented as teams).
Thus, nested teams can adapt base
classes and contain collaborations at
the same time.
This structure can help in building
complex collaborations and contain-
ment hierarchies.

Teams are regular classes and as
such can certainly be played by roles.
With stacking you are able to build
collaborations over a set of teams
and adapt team-level behaviour. This
can be used to coordinate teams and
collaborations that are otherwise not
related.

Roles can be played by roles as well,
enabling a layered architecture.
Due to the strong encapsulation
properties of Object Teams, a team
reference is needed in order to refer
to roles of another team. Layering
supports incremental extensions of
collaborations and decorator-style
adaptations.

Team

Role Base

StackingStacking

LayeringLayering

NestingNesting

FlightBonus

Subscriber subscriber FlightBooking

Passenger

void book(Flight flight)

BonusItem

void earnCredit()
void calculateCredit()

Flight

int getDistance()

void book(Passenger p)

getBonusMiles –> getDistance

earnCredit <– after book

Subscriber
int collectedCredits

void buyAndEarnCredit()

buyAndEarnCredit <– replace book

Role Binding
Aspect activation

Dynamic aspect activation
• per team instance
• per registered base object (with guards)
• per thread or globally

Method bindings
−> Forwarding (callout);
 making base method/field accessible
 via the role, too.

<− Method call interception (callin);
 behavioral adaptation as used in
 Aspect-Oriented Programming
 with before, after or replace-binding

Dynamic filtering
Guard predicates allow dynamic filtering
of callin bindings
• per method
• per role
• per team

Off On

base
code

.java

Java
Compiler

OT/J
Compiler

OT/J
code

.java

.class.class

JVM (standard)

Load-time
weaver

woven
classes

.class

external
classes.class

extended
byte-code
attributes

JMangler/JPLIS

Compiler

Runtime (OTRE)

Language
(OT/J)

CompilerCompiler

RuntimeRuntime
(OTRE)(OTRE)

IDEIDE
(OTDT)(OTDT)

ModelingModeling
(OTML)(OTML)

LanguageLanguage
DefinitionDefinition
(OTJLD)(OTJLD)

EngineeringEngineering
TestingTesting

ComponentsComponents
(OT/E)(OT/E)

The ObjectTeams/Java
Runtime Environment is
responsible for aspect
weaving. It transforms
the byte-code at load-
time to weave aspect
dispatch code into base
classes. This allows for
adaptation of classes
even if no source code
is available.

The ObjectTeams/Java
compiler extends the
regular Java compiler
to reflect the additional
features of OT/J.
Special instructions for
the weaving process
are stored in byte-code
attributes of compiled
team and role classes.

Language Definition (OTJLD)
This document defines the concepts of OT/J and its syntax and
semantics. It is published in three formats (web, print, otdt).

The OTRE is currently
implemented based on
JMangler. An experimental
version alternatively uses
the JPLIS API introduced by
Java 5.

In ongoing research, aspect-features are being
integrated directly into a JVM to enable more
efficient execution, e.g. on mobile devices.

OT/J constructs can
adapt elements of
plain Java and OT/J
implementations,
either in source or
byte-code.

The Object Teams Development Tooling (OTDT)
• supports development of OT/J programs by a rich set of Features
• provides and extends the convenience of the well-known Eclipse JDT
• adapts existing Eclipse plug-ins using OT/Equinox (Components)
• is developed since 2003 and freely available under Eclipse Public License
• is continuously tested by two comprehensive test suites (white & black box)

Eclipse platform

JDT

OTDT

OT Modeler

UML2 Tools

GMF

EMF GEFPDE

Equinox

1 2 3 4 8

1 2 3 4 5 6 7 Features
1 Navigation
2 Editor
3 Code Assist + Quick Fix
4 Call Hierarchy
5 Binding Editor
6 Team Monitor
7 Online Language Definition
8 Aspect Plug-in support
+ Debugger, Refactoring, ...

8
OT/E

Flight-Bonus Example
The example shows two requirements encapsulated in two
completely independent modules:
FlightBooking – a passenger can book flights.

Bonus – a subscriber may collect credit points.

FlightBonus is realized as a connector team, binding the roles
Subscriber and BonusItem inherited from the Bonus context
to classes of the FlightBooking system.

Adaptation takes place in the way that a passenger may play the
role of a subscriber and his flight plays the role of a bonus-item,
simply by using air miles to calculate the creditpoints.

... significant advances in ...

Modularity
All concerns should be encapsulated in
modules with well-defined boundaries.

+ Scalability
Techniques for composing a system from

components must be applicable at any scale.

+ Adaptability
Existing components must support various
adaptations, anticipated and unanticipated.

= Reusability
Only components supporting modularity,

scalability and adaptability can be efficiently
re-used in other systems and in the future.

... even in situations where these seem to conflict with each other.

Passenger
as Subscriber

book

Flight
as BonusItem

earnCredit

Flightbooking with Bonus

Passenger

book

Flightbooking

Flight

Sustainable
Software-Engineering

requires

ObjectTeams/Java
extends the Java programming language

for role-based and aspect-oriented software development
to support the requirements for

sustainable software engineering

Modularity

Adaptability
Off On

«playedBy»

«playedBy»

callin

callin
callout

Contact: Stephan Herrmann (project lead) Christine Hundt (OTRE, embedded systems)
Marco Mosconi (OT Modeler, components)www.objectteams.org

1

4

2

3

7

6

1

Product LinesGraphical User Interfaces
With Object Teams, the well-known Model-View-Controller
architectural pattern can be implemented in unprecedented
clarity and with optimal re-use.

Embedded Systems
Components

Component platforms like OSGi offer support for
larger modules with deployment, dependency and
lifecycle management.
To combine the strengths of Object Teams and OSGi,
OT/Equinox integrates OT/J with Equinox,
the Eclipse implementation of the OSGi standard.

C V M

MailViewer

MailController

MailSystem

TreeViewer

«adapts» «adapts»

Mailbox

Folder

Inbox Drafts

Mail

Fields of Application
 eature models, which are the basis for product line
development, can seamlessly be mapped to Object Teams
structures, thus improving traceability and maintainability.

F

Once small devices can execute OT/J programs, the
full benefits of product line development as well as
components (OSGi) can be leveraged in this field, too.

• Implement aspect dispatch in
the VM rather than weaving extra
dispatch code.

• Provide team activation as a VM
service rather than maintaining
administrative data via generated
code.

• Avoid byte-code duplication as
currently needed to realize team
inheritance on a standard JVM.

In order to support OT/J applications to run on small
devices, an optimized virtual machine is being
developed (see Tools/Runtime):

The Object Teams
Ecosystem

Code contributions by
• Fraunhofer FIRST
• Students (diploma theses)
Development
• Automated building/testing
• Trac issue tracker & wiki
Community
• Mailinglist otj-users
Application in
• Case studies (GEBIT Solutions)
• Implementation of the OTDT
• Classes, diploma theses ...

Evolution
As software matures over time, efforts are
shifted from design towards adaptation.
Both areas are covered by Object Teams.

t

Design

Adaptation

Plug-in A
CA2

Plug-in B

exportCB1

CB2

CB3 internal

«use»

Plug-in C
Team1 «aspectBinding»

R1

R2
«playedBy»

«playedBy»

<extension point="aspectBindings">
 <aspectBinding basePlugin=”B”>
 <team class=”Team1”
 activation=”ALL_THREADS”/>
 </aspectBinding>

plugin.xml

OT/Equinox is used in the OTDT,
where aspect plug-ins adapt
existing components from the JDT.
Another application is the integration and
customization of GMF-based graphical editors.

Fachgebiete Softwaretechnik und Programmierung eingebetteter Systeme
Technische Universität Berlin, Fakultät IV - Elektrotechnik und Informatik

http://swt.cs.tu-berlin.de http://pes.cs.tu-berlin.de

